Relative rigid objects in triangulated categories
نویسندگان
چکیده
منابع مشابه
Objects in Triangulated Categories
We introduce the Calabi-Yau (CY) objects in a Hom-finite Krull-Schmidt triangulated k-category, and notice that the structure of the minimal, consequently all the CY objects, can be described. The relation between indecomposable CY objects and Auslander-Reiten triangles is provided. Finally we classify all the CY modules of selfinjective Nakayama algebras, determining this way the self-injectiv...
متن کاملStrongly copure projective objects in triangulated categories
In this paper, we introduce and investigate the notions of ξ-strongly copure projective objects in a triangulated category. This extends Asadollahi’s notion of ξ-Gorenstein projective objects. Then we study the ξ-strongly copure projective dimension and investigate the existence of ξ-strongly copure projective precover.
متن کاملDimensions of Triangulated Categories via Koszul Objects
Lower bounds for the dimension of a triangulated category are provided. These bounds are applied to stable derived categories of Artin algebras and of commutative complete intersection local rings. As a consequence, one obtains bounds for the representation dimensions of certain Artin algebras.
متن کاملMutations in triangulated categories and rigid Cohen-Macaulay modules
We introduce the notion of mutation on the set of n-cluster tilting subcategories in a triangulated category with Auslander-Reiten-Serre duality. Using this idea, we are able to obtain the complete classifications of rigid Cohen-Macaulay modules over certain Veronese subrings.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2019
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2018.11.016